

Astronomy: Exploring the Universe

What are the celestial bodies that we have observed as part of our universe?

- Stars

- Moon

- Planets

- Black holes

- Galaxíes

- Asteroíds
- Nebulae Meteorítes
 - ...and more!

What were the two most significant models of the universe in Western science?

Geocentríc (earth-centered)	Helíocentríc (sun-centered)
 Euxodus Arístotle Ptolemy Made sense to naked eye astronomers (see sun ríse and set, see stars move around) Set of concentríc spheres (earth ín míddle, planets and sun on spheres outwards ín order of how often they repeat their patterns, outermost sphere ís black with stars on ít) 	 Arístarchus Aryabhata Ja'far íbn Muhammad Abu Ma'shar al-Balkhí Copernícus Galíleo Kepler Better way to explaín certaín phenomena (gravíty, etc.) Astronomers began to use telescopes Model of the solar system that we use today with sun ín center Early proponents stíll used círcular orbíts, now we use ellíptícal (líke ovals)

What is your "sign"?

What does that tell you about the date you were born?

- On that date, the sun was between the earth and that constellation

:

Constellations don't just show up in our horoscopes. Some of the most important ones to us are the ones that we can see all the time. These are called the:

_____Northern Círcumpolar Constellations_____

Circumpolar means __pole-circling (they appear to circle around the north star, Polaris)___.

A constellation is ____an officially recognized group of stars with defined borders_____.

An asterism is ____a grouping of stars, can be part of one or many constellations_____.

Draw the asterisms that make up the nine Northern circumpolar constellations.

Measuring Space

The two most important measurements are position and distance				
Altitude (posítíon)	 Angular dístance of a celestíal body above the horízon Measured in degrees Always relative to the person measuring 			
Azimuth (posítíon)	 The bearing of a celestial body from your position (on a compass!) Measured in degrees, clockwise from due north "draw" line from star to horizon, measure that point with a compass 			
Astronomical Unit (dístance)	 Based on the distance from the earth to the sun Used to measure distances inside solar systems 1 au = 149 597 870 700 m (or 1.5x10¹¹ m) 			
Light Year (dístance)	 The amount of distance a beam of light will travel in a straight line in one year 1 LY = 9.4607×10¹⁵ m 			

An **astrolabe** is a simple tool used for measuring the altitude of a star. **Azimuth** can be determined using a compass (or a compass app). After constructing your astrolabe with a partner, choose 6 items outside (trees, poles, power lines, etc.) and measure their altitude and azimuth.

Item	Alt, Azi	Item	Alt, Azi

3

1. a) Find the length of one light year in kilometers.

b) Find the length of one light-year in AU's.

c) A fuzzy green alien travels for three light years to arrive on Earth. How far did it travel, as measured in kilometers?

d) A fuzzy green alien travels for 1/2 light years, after it leaves Earth again. How far did it travel, as measured in AU's?

Pioneer 10 (also known as Pioneer F) is a 258-kilogram robotic space probe that completed the first interplanetary mission to Jupiter, and became the first spacecraft to achieve escape velocity from our Solar System.

2. Pioneer 10's radio signals left Pluto in April 1983. They traveled at the speed of light $(3.00 \times 10^5 \text{ km/s})$. How long did the radio signals take to reach Earth, a distance of $4.58 \times 10^9 \text{ km}$?

 Pioneer 10 traveled about 4.58 x 109 km between March 3, 1972 and April 25, 1983. Use an approximation of 11 years to determine the average speed of Pioneer 10 in km/h.

24